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Abstract. The significance of neutron spin adiabaticity in the data analysis of polarized Grazing Incidence 

Small Angle Neutron Scattering (GISANS) is discussed, with the aim of minimizing the number of 

simulation parameters of complex magnetic models within the neutron scattering cross-section. We illustrate 

how an estimate of the neutron polarization direction and adiabaticity can be obtained by magnetic field and 

neutron ray-tracing simulations and compare the results with measurements of the magnetic field map for 

the beamline used in the GISANS experiment. We show how small deviations from the neutron polarization 

direction with respect to the magnetic field vector at the sample position significantly affect the data analysis, 

and how this can be considered within the magnetic model of the scattering cross section using the Distorted 

Wave Born Approximation. 

1 Introduction and science case 

In neutron scattering, the adiabaticity of neutron spin 

transport, A, quantifies how well the semi-classical 

neutron polarization vector in the density matrix 

formalism, 𝑷⃗⃗ , follows the direction of magnetic field, 𝑩⃗⃗ . 
In polarized neutron scattering, maintaining a high 

neutron spin-transport adiabaticity along the beam path 

between spin-conditioning and detection components, 

such as polarizer, analyzer, and spin-flippers, and the 

sample is crucial. If the adiabaticity drops too low in a 

particular region on the beam path, this can severely 

affect the quality of the results obtained from neutron 

experiments with polarization analysis. To deal with 

these cases of critically low adiabaticity, precise 

simulations of the neutron polarization evolution along 

the flight path are needed to evaluate the polarization at 

the sample position, which is then put into the 

simulations of the scattering pattern generated by the 

sample. In this article, we demonstrate the determination 

of the neutron adiabaticity and polarization by a 

combination of magnetic field modelling and neutron 

ray-tracing, and the effect of an imperfect neutron 

transport on the data analysis, using the example of 

polarized GISANS from the magnetic domains and 

domain walls in a thin film of FePd. 

The adiabaticity is defined as the ratio of the Larmor 

frequency of the neutron spin, ωL, and the angular 

frequency of the magnetic field along the neutron flight 

path, ωB: 
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where γ is the gyromagnetic ratio of the neutron, 

𝑩⃗⃗ (x,y,z), is the magnetic field vector, and 𝒗𝒏⃗⃗ ⃗⃗   is the 

velocity of the neutrons. The gradient term is the 

Jacobian of the magnetic field direction vector. 

Multiplying the Jacobian with 𝒗𝒏⃗⃗ ⃗⃗   gives the vector of the 

rate of change of the field direction vector along 𝒗𝒏⃗⃗ ⃗⃗  . It 
is a measure of the ability of the neutron polarization to 

follow the magnetic field as the field direction changes. 
Two aspects have to be considered: (i) the Larmor 

precession of the neutron spin, i.e. the evolution of the 

components of 𝑷⃗⃗  perpendicular to the magnetic field, 

and (ii) the component of 𝑷⃗⃗  along the magnetic field 𝑩⃗⃗ . 

The evolution of the angle between 𝑷⃗⃗  and 𝑩⃗⃗  is of 

importance for the neutron adiabaticity. The adiabaticity 

is a measurement of part (ii). The evolution of 𝑷⃗⃗  along 

the neutron flight path can be determined by a 

combination of 3D magnetic field simulations together 

with neutron ray-tracing programs, with the simulations 

verified by measurements of the magnetic field profile 

of the setup. Our experiment belongs to a class of 

polarized neutron experiments known as uniaxial 

polarization analysis [1], which measures the 

component of neutron polarization along 𝑩⃗⃗ . This means 

that it does not measure the components of 𝑷⃗⃗  
perpendicular to the magnetic field, and so the effects of 
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Larmor precession are not measured.  The change of the 

component of 𝑷⃗⃗  along 𝑩⃗⃗  by the sample is one of the 

main focuses of uniaxial polarization analysis.  Other 

techniques do measure the component of 𝑷⃗⃗  

perpendicular to 𝑩⃗⃗ , such as spherical polarimetry 

techniques   using CRYOPAD [2] or MuPAD [3], or 

methods like spin-echo SANS [4]. 

To model the neutron scattering cross-section from 

polarized GISANS experiments, we use the Distorted 

Wave Born Approximation (DWBA) extended by the 

paracrystal theory, and with an appropriate model for 

the domain and domain wall pattern [5-7], which 

describes the lateral correlations probed by GISANS.  

This model of the domain wall pattern includes a 

number of sample-specific parameters (e.g. domain and 

domain wall width, the in-plane distribution and 

correlation length of the domain structure, and closure 

domain sizes). In addition, if the neutron polarization 

does deviate from pointing along the magnetic field axis 

during spin-transport between the polarizer and the 

sample, and between the sample and the analyzer, this 

will affect the result, introducing additional parameters 

into the simulation.  

Together, the combination of magnetic field 

modelling, analysis of the neutron polarization by ray 

tracing, and simulations of the scattering cross-section, 

allow us to minimize the simulation parameters needed 

for the analysis of polarized GISANS experiments on 

complex magnetic structures. In this paper, we provide 

a detailed example of this approach, illustrating how 

important it is when interpreting experimental results.  

First, we outline the necessary information about the 

specific sample, and show some polarized GISANS data 

collected from it. We demonstrate how the magnetic 

field simulations combined with neutron ray-tracing can 

be used for data analysis on the magnetic domain 

structure by the DWBA. Finally, we discuss the effect 

of an imperfect neutron spin transport on the analysis of 

the magnetic domain structure by the DWBA. 

2 Polarized GISANS on high-PMA FePd 
heterostructures 

2.1 Magnetic domains and domain walls 

L10-ordered FePd thin films with a high structural 

ordering of the Fe and Pd atoms give rise to a high 

perpendicular magnetic anisotropy (PMA), described by 

the uniaxial magnetocrystalline anisotropy constant Ku. 

In films with the crystalline c axis parallel to the surface 

normal, this leads to the formation of two set of domains 

with their magnetization respectively parallel or 

antiparallel to the film normal [8]. The specific forms of 

domains observed depends strongly on the way the film 

is grown, and the strength of the magneto-crystalline 

anisotropy energy Ema and shape anisotropy energy Esh 

can be effectively controlled [9-11]. These terms then 

determine the domain width, the domain wall width, the 

size of any closure domains, and the stray field strength 

associated with the magnetic domains.  For materials 

like these FePd films, the ratio of the magnetocrystalline 

anisotropy constant Ku and the shape anisotropy 

constant Ksh is a measure of the strength of the PMA: 

 

𝐾 =
𝐾𝑢

𝐾𝑠ℎ
     (2)  

 

If K > 1, high PMA is achieved. Further details are given 

in Refs. 8 and 9.  For our purposes here, the sample in 

question develops a maze-like structure (Fig. 1(a)) and 

consists of no or very small expected closure domains 

due to the very high PMA (K = 2 ± 0.1). Following Ref. 

[12], Bloch domain walls form between the out-of-plane 

oriented magnetic domains (Fig. 1(b)). The K-value, 

saturation magnetization, coercive field, measured 

domain periods, as well as theoretical domain and 

domain wall sizes for the relevant sample are listed in 

Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Magnetic properties of the investigated high-PMA 

FePd thin film [10]. The theoretical domain wall size is 

calculated based on the exchange constant Aex = 10-11 J/m [14]. 

K-value  2 ± 0.1 

Saturation 

magnetization 

(1.09 ± 0.05) 106 A/m 

Coercive field Hc,⊥ = (6 ± 2) mT; Hc,|| = (31 ± 1) 

mT 

Measured domain 

width 

(110 ± 5) nm 

Theoretical domain 

wall size 

≈ 8 nm  

 

The sketch in Fig. 1(b) assumes chiral Bloch walls 

with a preferred orientation of chirality 𝑪⃗⃗  parallel to the 

thin film surface (i.e., in the x-y-plane). Considering the 

centrosymmetric L10-structural phase of FePd without 

inversion asymmetry, no bulk-like Dzyaloshinskii–

Moriya interaction (DMI) is favored in the thick FePd 

film investigated in this study (dFePd = 44 ± 5 nm). 

Additionally, the domain width wD = 110 ± 5 nm is large 

in comparison to the Bloch domain wall width wDW  ≈ 8 

nm (see Table 1) and so the magnetic exchange length 

in FePd does not support a magnetic interaction between 

neighboring domain walls. In summary, the formation 

Fig. 1: (a) 3x3μm Magnetic Force Microscopy 

measurements on the domain pattern for a PMA FePd thin 

film with K = 2 ± 0.1 at room temperature. (b) (top) sketch 

of the side-view of the magnetic domains in the out-of-plane 

direction (yellow and red) and the Bloch domain walls 

(white) containing a net chirality with chiral propagation 

along 𝑪⃗⃗ . (bottom) A visualization on the magnetic vector 

orientation by micromagnetic simulations on high-PMA 

FePd with K = 1.5 by van der Laan et al. [13]. 
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of a net chirality from Bloch domain walls is not 

expected. 

However, the actual sample is a heterostructure stack 

of Pd (cap, 1nm) / Nb (39nm) / FePd(44nm) / Pd (buffer, 

60nm) / Cr (seed, 1nm) / MgO (substrate), where 

symmetry breaking at the interface of the FePd and the 

heavy metal buffer layer Pd may lead to interlayer DMI 

[15]. In multilayer structures composed of ultrathin 

films, this has been shown to lead to chiral Néel walls 

[15], but Pollard et al. [16] have shown that a 

combination of the interfacial symmetry breaking and 

the demagnetization field resulting from dipole-dipole 

interactions can favor the formation of chiral Bloch 

walls. In this experiment, we have observed asymmetric 

GISANS peaks in the spin flip (SF) channel that are 

generated by scattering from the Bloch domain walls.  

As will be explained in the following sections, nuclear-

magnetic interactions can be ruled out as the origin of 

the SF asymmetry and hence it can be explained only by 

the existence of chiral domain walls. To be sensitive to 

such chiral structures, the neutron polarization direction 

𝑷⃗⃗  must have components parallel to the propagation 

direction of the chirality 𝑪⃗⃗ , which for Bloch domain 

walls lies within the surface plane (Fig. 1b).  In our 

experiment, the expected neutron polarization is parallel 

to the external magnetic field applied perpendicular to 

the sample surface. This motivated a detailed 

investigation of the magnetic field vector at the sample 

position and the neutron adiabaticity along the beam 

path. 

2.2 Polarized GISANS  

In combination with polarization analysis, GISANS can 

provide insight into both in- and out-of-plane oriented 

chiral magnetic domain walls, and is therefore a logical 

choice for studying domain structures of the type that 

can be engineered into FePd thin films [11]. The neutron 

beam comes in with an angle close to the critical angle 

for total external reflection, 𝜃c. Using the small-angle 

approximation, the scattering vector 𝑸⃗⃗  is described by 

Eq. 3 [17], with the incident- and reflected angles θi and 

θf, as well as the off-specular scattered angles 𝛥𝜃x and 

𝛥𝜃y (see Fig. 2(a)). The Qy-line at  𝜃i = 𝜃f is called the 

GISANS-line. 

 

(

𝑄𝑥

𝑄𝑦

𝑄𝑧

) = 
2𝜋

𝜆
(
𝜃𝑖𝛥𝜃𝑥 + 

(𝛥𝜃𝑥)2

2
+ 

(𝛥𝜃𝑦)2

2

𝛥𝜃𝑦

2𝜃𝑖 + 𝛥𝜃𝑥

)  (3) 

 

Fig. 2(b) shows the SF channels of a polarized 

GISANS measurement on our high-PMA FePd thin film 

at T = 10 K and 𝜃i close to 𝜃c, measured at the vSANS 

beamline at NIST [18,19], with Qz-integrated I(Qy) 

linecuts integrated over the range 0.137 nm-1 < Qz <0.2 

nm-1 shown in Fig. 2(c). The experiment was carried out 

with a sample-to-detector distance of 15 m and a neutron 

wavelength of 8 Å with a wavelength spread of 12 %.  A 

guide field perpendicular to the thin film surface of 

𝐵⊥ = 2.6 mT was applied. This configuration gives rise 

to GISANS peaks in the SF channels at 

Qy = ± 0.033 nm 1, corresponding to a period of 96 nm. 

The peaks were generated by scattering from the Bloch 

domain walls which have a magnetic induction 

perpendicular to the applied field direction. A specular 

peak arising due to inefficiencies in the polarizer, spin-

transport, spin flipper, and the analyzer. If the 

polarization components and spin-transport in between 

are perfect, there should be no specular peak at this 

position. The whole-system setup without the sample 

has a flipping ratio of 45, with the analyser efficiency 

previously measured to be Pan = 0.988.  

The measurements show a clear asymmetry between 

the left and right GISANS peak (Fig. 2(c)).  This arises 

due to the non-zero average chirality of the Bloch 

domain walls in the sample, which we now illustrate.   

The total elastic scattering cross section for the 

interaction of a neutron beam with a magnetic sample is:  

 

           𝜎 = 𝜎𝑁 + 𝜎𝑀 + 𝜎𝑁𝑀 + 𝜎𝑀×𝑀  (4) 

where 𝜎𝑁 is the nuclear scattering contribution, 𝜎𝑀 is the 
magnetic scattering from non-chiral magnetic structure, 
𝜎𝑁𝑀 is the nuclear-magnetic interference term, and 
𝜎𝑀×𝑀 is an additional contribution that is only non-zero 
for chiral magnetic arrangements [20-22]. To describe 
the scattering patterns obtained from polarized 
measurements, the incident and final neutron 
polarizations need to be taken into account, such that the 
total elastic scattering cross section is 

𝑷′ ⃗⃗⃗⃗  ⃗𝐼 = 𝑷 ⃗⃗  ⃗ (𝑁𝑁 −
1

3
𝐼𝑠𝑖) + (𝑷 ⃗⃗  ⃗ ∙ 𝑴⃗⃗⃗̃ ⊥) 𝑴⃗⃗⃗ ⊥ +

(𝑷 ⃗⃗  ⃗ ∙ 𝑴⃗⃗⃗⃗⃗⃗ ⊥)𝑴⃗⃗⃗̃ ⊥ − 𝑷 ⃗⃗  ⃗ (𝑴⃗⃗⃗̃ ⊥ ∙ 𝑴⃗⃗⃗ ⊥) + 𝑖𝑁 (𝑷 ⃗⃗  ⃗ × 𝑴⃗⃗⃗̃ ⊥) −

  𝑖𝑁(𝑷 ⃗⃗  ⃗ × 𝑴⃗⃗⃗ ⊥) + 𝑁𝑴⃗⃗⃗̃ ⊥ + 𝑁𝑴⃗⃗⃗ ⊥ − 𝑖(𝑴⃗⃗⃗̃ ⊥ × 𝑴⃗⃗⃗ ⊥)      (5) 

 

where 𝑷′ ⃗⃗⃗⃗  ⃗ is the outgoing polarization of the beam, 𝑷 ⃗⃗  ⃗  is 
the ingoing polarization, N is Fourier transform of the 

Fig. 2. (a) The scattering geometry of the polarized GISANS 

measurements that probe I(Qy,Qz). The specular and GISANS 

lines are shown on the detector in red; the magnetic field is 

applied along the z-axis. (b) Measured SF intensity maps in 

the Qy-Qz plane for the channels I+- (left) and I-+ (right) at T = 

(10.10 ± 0.02) K. The line at Qz = 0.17 nm-1 corresponds to the 

GISANS line, 𝑛 denotes the incident neutron beam. (c) I(Qy) 

integrated over 0.137 nm-1 < Qz < 0.2 nm-1 for the data in panel 

(b).  
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nuclear structure factor, with its complex conjugate 𝑁, 

𝑴⃗⃗⃗ ⊥ is the Fourier transform of the sample magnetization 

component perpendicular to the scattering vector 𝑸⃗⃗ , 

with complex conjugate  𝑴⃗⃗⃗̃ ⊥, and 𝐼𝑠𝑖   the nuclear spin-
incoherent scattering intensity. This shows that only 

magnetization components perpendicular to 𝑸⃗⃗  are 
measured. 

From Eq. 5, for a specific polarization direction ν in 
any Cartesian direction, the asymmetric scattering 
contributions to 𝜎 are [22]: 

 

         𝛥𝑆𝐹
ν ≈ 2𝑖 (𝑴⃗⃗⃗̃ ⊥ × 𝑴⃗⃗⃗ ⊥)

ν
   (6) 

         𝛥𝑁𝑆𝐹
ν ≈ 2ℜ(𝑁𝑴⃗⃗⃗̃ ⊥,ν)   (7) 

 

for the SF and non-spin-flip (NSF) channels 

respectively. A contribution from any chirality with 

propagation vector 𝑪⃗⃗  parallel to (𝑴⃗⃗⃗̃ ⊥ × 𝑴⃗⃗⃗ ⊥)
ν
in the 

direction of the neutron polarization will therefore lead 

to asymmetric scattering peaks in the SF channels.  

For our polarized GISANS measurements, we have 

used a setup with guide field direction perpendicular to 

the thin film surface and hence perpendicular to 𝑪⃗⃗  of 

Bloch domain walls in high-PMA FePd as shown in 

Fig. 1. From Eq. 6, only components of 𝑪⃗⃗  parallel to 𝑷⃗⃗  
will lead to asymmetric spin-flip GISANS peaks. The 

observed asymmetry in Fig. 2(c) could therefore arise 

due to a misalignment between 𝑷⃗⃗  and the sample surface 

normal. 

In Section 3, we discuss how the polarization 

direction may be affected by adiabaticity during spin-

transport along the neutron flight path.  First, however, 

we describe the magnetic model used to calculate the 

total scattering cross section, based on previous models 

developed by Toperverg and Kentzinger [5,6].  

2.3 Description of the DWBA simulation of 
polarized GISANS measurements on high-PMA 
FePd 

Within the Distorted Wave Born Approximation 

(DWBA), the neutron scattering cross section dσ/dΩ 

from a GISANS experiment can be calculated assuming 

a depth-dependent, laterally homogeneous magnetic 

potential 𝑉̂0,𝑙(𝑧) inside each layer l, which is perturbed 

by a lateral inhomogeneous magnetic potential 

𝑉̂𝑝𝑒𝑟𝑡,𝑙(𝒔⃗ ), where 𝒔⃗  is a 2D vector within the plane of the 

sample surface (Fig. 3).   

 

This leads to off-specular scattering: 

 
𝑑𝜎

𝑑𝛺
(𝜃𝑖 , 𝜃𝑓 , 𝑸⃗⃗ //) = |

𝑚𝑛

2𝜋ℏ2
∑ ⟨ 𝜓𝑓,𝑙  |𝑉̂𝑝𝑒𝑟𝑡,𝑙(𝒔⃗ )|𝜓𝑖,𝑙  ⟩𝑙 |2    (8) 

 

with ψf,l being the distorted wavefunction inside layer l 

after the scattering event, ψi,l  the distorted wavefunction 

inside l just before the scattering event, and 𝑸⃗⃗ // the in-

plane component of the scattering wave vector. Further 

details are given in Ref. [6].  

The perturbation potential 𝑉̂𝑝𝑒𝑟𝑡,𝑙(𝒔⃗ ) is given by the 

sum of the nuclear and magnetic scattering length 

density fluctuations 𝜌̃𝑁,𝑙(𝒔⃗ ) and 𝜌̃𝑀,𝑙(𝒔⃗ ) respectively: 

 

    𝑉̂𝑝𝑒𝑟𝑡,𝑙(𝒔⃗ ) =
2𝜋ℏ2

𝑚𝑛
(𝜌̃𝑁,𝑙(𝒔⃗ ) ∙ 1̂  +  𝜌̃𝑀,𝑙(𝒔⃗ )𝝈⃗⃗̂ ∙ 𝒃⃗⃗ 𝑙)   (9) 

 

where 𝝈⃗⃗̂  is the vector of Pauli matrices and 𝒃⃗⃗ 𝒍 is the unit 

vector parallel to the magnetic field in layer l. 

Theoretical descriptions of 𝜌̃𝑀,𝑙(𝒔⃗ )  of the magnetic 

domain structure of a high-PMA material, like FePd, 

using the DWBA have been formulated by Toperverg 

and Kentzinger [5,6]. In a material with a maze domain 

structure, this model has to be extended by the 

paracrystal theory [7] and integration over the in-plane 

oriented domain orientations. The maze domain pattern 

has to be divided into subunits of an ordered subsystem, 

each consisting of two antiparallel out-of-plane oriented 

domains and one Bloch domain wall (Fig. 4(a)).  These 

subunits are rotated within the surface plane; Fig. 4(b,c) 

shows an example of such a maze structure and division 

of magnetic domains into small units assuming a parallel 

alignment of the magnetic domains within one sub-unit. 

Lx represents the correlation length of one ordered 

subsystem parallel to the domain wall (Fig. 4(c)). The 

total scattering cross section can be written as sum over 

the scattering from all possible sub-units.  The process 

is described in more detail by Stellhorn [10]. For the 

high-PMA FePd layer used here, MFM measurements 

show a maze distribution of magnetic domains with an 

average direction θav tilted away from the incident 

neutron beam direction of about 20°, and with a 

distribution of domain directions around the mean 

Fig. 3. Non-perturbed scattering potential 𝑉̂0,𝑙(𝑧) of a 

homogeneous sample and perturbation potential 𝑉̂𝑝𝑒𝑟𝑡,𝑙(𝒔⃗ ) of 

a sample with lateral inhomogeneous structural or magnetic 

density [10]. 

 

Fig. 4. (a) Side-view of one subunit with two out-of-plane 

oriented domains of size wD and one Bloch domain wall of size 

wDW. (b) 3x3 μm MFM measurement on high-PMA FePd with 

a maze domain structure – the yellow boxes denote two 

subunits. (c) In-plane rotation of pairs of subunits about 

different angles ζ.  The correlation length parallel to the 

domain wall is given by Lx.   
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direction which can be roughly approximated with a 

Gaussian-type shape (Fig. 5). This distribution is used in 

our model.  The reasons for the preferential in-plane 

domain orientation are not germane to this article, but 

are discussed elsewhere [10,11].   

Within this model, the incident and outgoing 

polarization vectors 𝑷⃗⃗ 𝑖 and 𝑷⃗⃗ 𝑓 are included via the 

density matrices of the incident and reflected neutron 

beam 𝜌̂𝑖 =
1

2
(1̂ + 𝑷⃗⃗ 𝒊𝝈⃗⃗̂ ) and 𝜌̂𝑓 =

1

2
(1̂ + 𝑷⃗⃗ 𝒇 𝝈⃗⃗̂ ) using: 

             
𝑑𝜎

𝑑𝛺
(𝜃𝑖 , 𝜃𝑓 , 𝑸⃗⃗ //) = 𝑡𝑟(𝜌̂𝑓𝐹̂𝑓𝑖𝜌̂𝑖𝐹̂𝑓𝑖

†) (10) 

 

where 𝐹̂𝑓𝑖 = 𝐹̂𝑓𝑖(𝑸⃗⃗ //) is the scattering amplitude 

operator (in the space of spin states) and 𝐹̂𝑓𝑖
†

 its 

Hermitian conjugate. 

 
Fig. 5. (a) 3x3 μm MFM measurement on the high-PMA FePd 

sample measured by GISANS. A maze domain structure is 

seen. (b) The Fourier transform of panel (a), showing a nearly 

Gaussian-type domain distribution around a mean angle tilted 

20° from the incident neutron beam direction. 

 

3 Neutron spin adiabaticity  

3.1 Magnetic field measurements & simulations 
using COMSOL 

In this section we discuss how the polarization direction 

may have been affected by adiabaticity during spin-

transport along the beam path: The setup at vSANS, 

NIST [17] is illustrated in Fig. 6. The neutron beam went 

from right to left. The incoming neutrons’ polarization 

in the guide field was oriented in the y-direction, then 

rotated into the z-direction (axis parallel to the surface 

normal) at the sample position by the magnetic field 

applied from the pole-pieces of the Titan electromagnet, 

and was again rotated in the x-direction for the 3He-cell 

analyzer. Two guide fields just in front of and behind the 

pole-pieces (not shown in Fig. 6, positions marked in 

Fig. 7) kept the magnetic field along y and rotated it to 

the x-direction, respectively. A precise measurement of 

the 3D magnetic field configuration along the beam path 

has been carried out using a 3D Hall probe. The results 

are compared with simulations of the magnetic field 

configuration using finite element computational 

software COMSOL Multiphysics [23]. 

 
Fig. 6. (a) Beamline setup and polarization direction (red 

arrows) of the polarized GISANS experiments at vSANS, 

NIST [18], using an electromagnet with pole pieces extending 

close to the cryoshield containing the sample holder, visible in 

the inset on the bottom. 

 

The neutron adiabaticity along the beam path may be 

calculated if the magnetic field configuration of the 

whole beamline setup is known.  This can be simulated 

using COMSOL Multiphysics. Individual beamline 

components are included with their basic physical 

properties (such as the dielectric constant or magnetic 

permeability). Sources of magnetic field are included 

either as permanent magnets or current-carrying coils as 

relevant.  The 3D magnetic field distribution ((Bx,By,Bz) 

in Tesla) is then calculated in a predefined area as a 

function of the position (x,y,z) along the neutron flight 

path.  

Care needs to be taken when defining the mesh (shape, 

size, density, and number of elements within the 

geometry) on which the interpolation and accuracy of 

the solution is based on: a fine mesh that scales with the 

size of the object is imposed on the focused regions and 

the magnetic components, moderate mesh size in 

regions connecting them, and coarse meshing can be 

used everywhere else.  Our input model is shown in 

Fig. 7.  This yields a magnetic field configuration 

𝑩⃗⃗ COMSOL and adiabaticity ACOMSOL as given in Fig. 8. 

 

 
Fig. 7. The input model to COMSOL of the components of the 

vSANS beamline at NIST [18] used for the polarized GISANS 

measurements discussed here. 
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These computational results were then compared 

with magnetic field measurements of the actual setup 

used at vSANS (NIST), made using a 3D Hall probe 

mounted on a fixed stage which could be slid through 

the setup, along the neutron beam path.  The resulting 

measured field, (Bx,By,Bz)meas(x) is compared with 

𝑩⃗⃗ COMSOL and ACOMSOL in Fig. 9.  

 

 
Fig. 9. The measured (circles) and simulated (lines) magnetic 

field components (Bx,By,Bz) (left axis) and the calculated 

adiabaticity (right axis) as a function of the position x 

(measured as the distance from the opening of the source 

guide) along the neutron flight path.  The labelled guide fields 

are as shown in Fig. 6. 

From this, two conclusions can be drawn: (i) a 

critically low adiabaticity A < 5 is reached just in front 

of the electromagnet during the rotation of polarization 

from the y to the z-direction, indicating a possible 

misalignment of 𝑷⃗⃗  with respect to 𝑩⃗⃗ , and (ii) the 

measured and simulated field strengths coincide and so 

𝑩⃗⃗ COMSOL can be used as an input to the neutron ray-

tracing program McStas 2.7 [24,25].  

3.2 Neutron polarization simulations using 
McStas 

McStas is a neutron ray-tracing Monte-Carlo simulation 

package [24,25]. It simulates the parameters of an 

ensemble of neutrons (the intensity, position, velocity, 

and polarization) starting from a source and passing 

through defined beamline components. Here, we 

concentrate on how the neutron beam polarization 

𝑷⃗⃗ McStas changes as the neutrons travel through the 

magnetic field map calculated using the COMSOL 

simulations described and validated above. The most 

relevant parameters defining the neutron polarization 

are the step-size of the magnetic field imported from the 

COMSOL simulations, the angular accuracy (the 

threshold below which two magnetic fields are 

considered to be parallel), the neutron wavelength and 

distribution, and the incident polarization after the 

polarizer. The resulting neutron polarization 𝑷⃗⃗ McStas,sample 

at the sample position of the neutrons passing 

through 𝑩⃗⃗ COMSOL is then compared with the applied field 

direction 𝑩⃗⃗ COMSOL,sample  at the sample position via the 

angle α, defined as  

 

    𝛼 = cos−1 (
  𝑩⃗⃗ 𝐶𝑂𝑀𝑆𝑂𝐿,𝑠𝑎𝑚𝑝𝑙𝑒∙  𝑷⃗⃗ McStas,sample

 |𝑩⃗⃗ 𝐶𝑂𝑀𝑆𝑂𝐿,𝑠𝑎𝑚𝑝𝑙𝑒|| 𝑷⃗⃗ McStas,sample|
) (11) 

 

The neutron polarization in out-of-plane direction 

(along the applied magnetic field) and the angle α 

between 𝑷⃗⃗ McStas,sample and 𝑩⃗⃗ COMSOL,sample as function of the 

transversal positions y and z around the sample position 

are depicted together with the sketched position and size 

of the investigated FePd thin film in Fig. 10. Table 2 lists 

Fig. 8. (a) The calculated magnetic field map of the polarized 

GISANS setup at vSANS, NIST. The colour scale denotes the 

strength of magnetic field B = |(Bx,By,Bz)| in (10-4 T). The red 

arrows denote the magnetic field direction along the neutron 

beam path.  The neutrons are incident from the right moving 

left, as in Figures 6 and 7. Two guide fields in front of and 

behind the sample have been installed to adiabatically rotate the 

neutron spin.  (b) The calculated adiabaticity map.  There is a 

region just before the sample with a critically low adiabaticity 

value.   The magnetic field vector along the neutron beam path 

is again shown by red arrows denoting the magnetic field 

vector.  

 

Fig. 10. The results of the McStas simulation: (a) the degree of 

polarization in the out-of-plane direction (along the applied 

magnetic field direction), and (b) the angle α between the  

𝑷⃗⃗ McStas,sample and 𝑩⃗⃗ COMSOL,sample. (c) A sketch of the sample 

geometry showing the incident neutron beam direction (x),  the 

magnetic field vector along the surface normal (z), and the tilted 

polarization 𝑷⃗⃗ . 
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the relevant parameters resulting from the McStas 

simulations. 
 

Table 2. Parameters and results from the McStas simulation 

Step size of magnetic 

field 
2.5 mm 

Angular accuracy 1° 

Wavelength + 

distribution 
λ = 8 Å , Δλ = 0.96  

Initial polarization 

 
𝑷⃗⃗ 𝑀𝑐𝑆𝑡𝑎𝑠,𝑖𝑛 = (0, 0.97, 0) 

Resulting 

polarization at the 

sample position 

𝑷⃗⃗ 𝑀𝑐𝑆𝑡𝑎𝑠,𝑠𝑎𝑚𝑝𝑙𝑒 =

(0.015, −0.077 , −0.966)  

Magnetic field vector 

at the sample position  
𝑩⃗⃗ 𝐶𝑂𝑀𝑆𝑂𝐿,𝑠𝑎𝑚𝑝𝑙𝑒 =

 (0.1, −0.2, 2.7 ) (mT)  

Angle α  between 

𝑃⃗ McStas,sample and 

𝐵⃗ COMSOL,sample 

 

α = 9° 

 

The simulation yields an angle of α = 9° between the 

neutron polarization and the magnetic field direction. 

This result can then be included in the simulations of the 

magnetic scattering pattern of polarized GISANS 

measurements described in Section 2.3 by including the 

value of 𝑷⃗⃗ McStas,sample. Depolarization of the neutron 

beam due to stray fields from the sample can lead to an 

additional rotation of 𝑷⃗⃗ . We note that the electromagnet, 

which includes the sample stage, was tilted 4.7° away 

from the horizontal; this was included in the COMSOL 

simulations. Hence, the given 𝑩⃗⃗ 𝐶𝑂𝑀𝑆𝑂𝐿,𝑠𝑎𝑚𝑝𝑙𝑒  includes 

this tilt of the applied field at the electromagnet w.r.t to 

the z-direction. As the sample stage is connected to the 

electromagnet, the magnetic field orientation with 

respect to the sample was unchanged by this tilt and did 

not contribute to the angle between neutron polarization 

and the sample normal. 
  

The strong agreement between the measured and 

simulated magnetic fields gives confidence in the 

simulated adiabaticity shown in Fig. 9.  Critically low 

values of A for the neutron beam are reached in front of 

the sample position. As is clear from Eq. 5, this can have 

an effect on the resulting magnetic scattering pattern, as 

it means that scattering from the chiral magnetic 

moments with 𝑴⃗⃗⃗̃ ⊥ × 𝑴⃗⃗⃗ ⊥ could become visible as the 

asymmetry measured I(Qy, Qz) in Fig. 2.Further 

improvements of the presented simulations and resulting 

polarization directions are still being performed, 

including comparisons with the neutron ray tracing 

software VITESS, and checking finer angular 

accuracies for the McStas simulation. However, the 

presented results show the necessity of a detailed 

investigation of the neutron beam adiabaticity and 

polarization throughout the beamline, to aid in 

constraining the simulation parameters required for 

calculations of the scattering cross section, particularly 

complex magnetic models. 

 

4 Conclusions 

Our results show that neutron polarization simulations 

are an integral part of experiments relying on polarized 

neutrons. They highlight that significant neutron 

polarization misalignments may occur even when the 

magnetic field direction at the sample point and the 

neutron polarization measurements look promising. The 

detailed simulations help constrain calculations of the 

cross section that start from the sample properties by 

providing detailed inputs for the neutron polarization 

and the magnetic field.  They also provide aspect for a 

comprehensive data analysis of magnetic scattering 

cross sections, especially given that the magnetic field 

direction at the point of sample scattering and the 

neutron polarization may look good even while 

significant neutron polarization misalignment is 

occurring. Benefits are the minimization of unknown 

simulation parameters and a global understanding of the 

influence of the magnetic field vector as a function of 

the neutron beam path.  Especially guide field 

conditions, with the constraint of low field values at the 

sample position, and a non-adiabatic neutron transport 

imply the need of precise scattering cross section 

simulations.  If concurrently at the same time, complex 

magnetization distributions within the investigated 

samples have to be considered, the need of minimizing 

unknown parameters is even stronger. 

We present a reduction of unknown parameters for the 

simulation of scattering cross sections from polarized 

GISANS measurements with polarization analysis. We 

have performed a comprehensive investigation of the 

neutron polarization orientation with respect to the 

applied magnetic field vector using magnetic field 

modelling in COMSOL and neutron ray tracing in 

McStas, and a comparison with magnetic field vectors 

obtained from measurements along the neutron beam 

path of the employed polarized GISANS setup. As a 

result, a deviation from the direction of polarization with 

respect to the applied magnetic field direction has been 

quantified, opening the possibility to be considered in 

simulations of the scattering cross section of the 

investigated sample based on the Distorted-Wave-Born-

Approximation. 
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